A consensus sequence present in the 5'- or 3'-untranslated regions of several Crithidia fasciculata messenger RNAs encoding proteins involved in DNA metabolism has been shown to be necessary for the periodic accumulation of these mRNAs during the cell cycle. A protein complex termed cycling sequence-binding protein (CSBP) has two subunits, CSBPA and CSBPB, and binds the consensus sequence with high specificity. The binding activity of CSBP was shown to vary during the cell cycle in parallel with the levels of putative target mRNAs. Although disruption of the CSBPA gene resulted in loss of both CSBPA and CSBPB, the putative target message levels still continued to vary during the cell cycle. The presence of an additional and distinct binding activity was revealed in these CSBPA null mutant cells. This activity, termed CSBP II, was also expressed in wild-type Crithidia cells. CSBP II has higher binding specificity for the cycling sequence element than the earlier described CSBP complex. Three polypeptides associated with purified CSBP II show specific binding to the cycling sequence. These proteins may represent a family of sequence-specific RNA-binding proteins involved in post-transcriptional regulation.