The alpha2beta1 integrin is a major collagen receptor on platelets. Although it has been proposed that alpha2beta1, like alphaIIbbeta3, undergoes agonist-induced activation, neither the potential contributions of alpha2beta1 receptor/ligand internalization to the increase in ligand binding nor the roles of the alpha2 and beta1 cytoplasmic domains in activation of this integrin have been previously explored. Activation of alpha2beta1 was assessed with fluorescein isothiocyanate-labeled soluble type I collagen binding to platelets by flow cytometry. Although collagen internalization in response to agonist activation of platelets was significant, agonist-induced collagen binding still occurred under conditions that block internalization, with minimal changes in cell surface alpha2beta1 expression. Introduction of cell-permeable peptides containing the alpha2 cytoplasmic tail, and especially the membrane proximal KLGFFKR domain, induced alpha2beta1 activation in resting platelets, whereas a cell-permeable peptide containing the beta1 cytoplasmic tail was without effect. Thus, collagen binding to stimulated platelets is increased due to alpha2beta1 activation, in addition to internalization, and the GFFKR motif appears to play an important role in the activation process.