The potential application of the Comet assay for monitoring genotoxicity in the freshwater mussel Dreissena polymorpha was explored and a preliminary investigation was undertaken of the baseline levels of DNA damage in mussel haemocytes of animals kept at different temperatures. In addition, in vitro cell sensitivity against genotoxicants was assessed in relation to increasing temperatures. The mussels were kept at four different constant temperatures (4, 18, 28 and 37 degrees C) for 15 h. The haemocytes withdrawn were treated in vitro with melphalan, as a model genotoxic compound, or sodium hypochlorite, a common water disinfectant capable of producing mutagenic/carcinogenic by-products, at the established temperatures for 1h. The data obtained in vivo, in cells directly withdrawn from the mussels showed a significant (P<0.001, Student's t test) inter-individual variability, probably due to genetic and epigenetic factors and an increasing amount of DNA damage at increasing temperature. Mussel haemocytes showed a clear dose-response effect after in vitro melphalan treatment. Hypochlorite treatment also significantly increased DNA migration: the damage was temperature dependent, with a similar increase at 4 and 28 degrees C and a minimum level at 18 degrees C. This study demonstrates the potential application of the Comet assay to haemocytes of D. polymorpha. However, these findings suggest that temperature could alter both DNA damage baseline levels in untreated animals and cell sensitivity towards environmental pollutants in in vitro conditions. Therefore, more information is needed about seasonal variations and the natural background levels of DNA damage in mussels living in the wild, before they are used for the monitoring of genotoxic effects in aquatic environments.