Metastatic disease remains a significant contributor to morbidity and mortality in patients with breast cancer. An improved molecular and biochemical understanding of the metastatic process is expected to fuel the development of new therapeutic approaches. The suppression of tumor metastasis, despite tumor cell expression of oncogenes and metastasis-promoting events, has become a diverse and fruitful field of investigation. Although many genetic events promote metastasis, several genes show relatively reduced expression levels in metastatic tumor cells in mouse model systems and in aggressive human tumors. Re-expression of a metastasis-suppressor gene in a metastatic tumor cell line results in a significant reduction in metastatic behavior in vivo with no effect on tumorigenicity. The known metastasis-suppressor gene products nm23, KAI1, mitogen-activated protein kinase kinase 4, breast cancer metastasis suppressor-1, KiSS1, RHOGDI2, CRSP3, and vitamin D3-upregulated protein/thioredoxin interacting protein exhibit unexpected biochemical functions that have shed new light on signaling events that are important in metastasis. Most metastasis suppressors function at the translationally important stage of outgrowth of micrometastatic tumor cells at a distant site. We hypothesize that elevation of metastasis suppressor gene expression in micrometastatic tumor cells in the adjuvant high-risk population of patients with breast cancer will halt metastatic colonization and have a clinical benefit. DNA methylation inhibitors have shown limited promise in increasing metastasis-suppressor gene expression, and ligands of the nuclear hormone receptor family are currently under investigation in vitro and in vivo. Clinical testing of agents that increase metastasis-suppressor gene expression is expected to require tailored trial designs.