Activation of cell adhesion kinase beta by mechanical stretch in vascular smooth muscle cells

Endocrinology. 2003 Jun;144(6):2304-10. doi: 10.1210/en.2002-220939.

Abstract

We have studied whether activation of cell adhesion kinase beta (CAKbeta) is involved in stretch-induced signaling pathway in cultured rat vascular smooth muscle cells. Cyclic stretch (1 Hz) induced a rapid (within 1 min) phosphorylation of CAKbeta, whose effect was time and strength dependent. Both Ca(2+) and Na(+) ionophores (A23187 and monensin) stimulated phosphorylation of CAKbeta in a similar fashion to mechanical stretch. The stretch-induced phosphorylation of CAKbeta was inhibited completely by an intracellular Ca(2+) chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)] and largely by gadolinium, but only partially by an extracellular Ca(2+) chelator (EGTA). An angiotensin type 1 receptor antagonist (CV11974) abolished the phosphorylation of CAKbeta stimulated by angiotensin II, but not by mechanical stretch. Mechanical stretch rapidly (within 1 min) increased the association of CAKbeta with c-Src, but not pp125(focal adhesion kinase). Stretch-induced phosphorylation of ERK1/2 was inhibited by EGTA and an inhibitor of the Src kinase family [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], but not by cytochalasin D, to disrupt actin polymerization. 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or cytochalasin D did not affect stretch-induced phosphorylation of CAKbeta. These data suggest that mechanical stretch stimulates activation of CAKbeta, followed by its association with c-Src, which requires ion influx mainly via stretch-activated nonselective ion channels, thereby leading to activation of the p21(Ras)/ERK1/2 cascade in vascular smooth muscle cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / enzymology
  • Animals
  • Aorta, Thoracic / cytology
  • Calcium / metabolism
  • Cells, Cultured
  • Enzyme Activation / drug effects
  • Enzyme Activation / physiology
  • Focal Adhesion Kinase 1
  • Focal Adhesion Kinase 2
  • Focal Adhesion Protein-Tyrosine Kinases
  • Gadolinium / pharmacology
  • Ionophores / pharmacology
  • Male
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / enzymology*
  • Protein-Tyrosine Kinases / metabolism*
  • Proto-Oncogene Proteins pp60(c-src) / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Angiotensin / metabolism
  • Sodium / metabolism
  • Stress, Mechanical

Substances

  • Ionophores
  • Receptors, Angiotensin
  • Sodium
  • Gadolinium
  • Protein-Tyrosine Kinases
  • Focal Adhesion Kinase 1
  • Focal Adhesion Kinase 2
  • Focal Adhesion Protein-Tyrosine Kinases
  • Proto-Oncogene Proteins pp60(c-src)
  • Ptk2 protein, rat
  • Ptk2b protein, rat
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • Calcium