The breaking of immune tolerance of "self-antigens" associated with angiogenesis is an attractive approach to cancer therapy by active immunity. We used vascular endothelial growth factor receptor-2 (VEGFR-2) as a model antigen to explore the feasibility of the immunotherapy with a vaccine based on a xenogeneic homologous protein. To test this concept, we prepared a quail homologous VEGFR-2 protein vaccine (qVEGFR) based on quail VEGFR-2. At the same time, a protein vaccine based on the corresponding ligand-binding domain of mouse self-VEGFR-2 (mVEGFR) was also prepared and used as a control. We found that immunotherapy with qVEGFR was effective at protective and therapeutic antitumor immunity in several solid and hematopoietic tumor models in mice. Autoantibodies against mouse VEGFR-2 (Flk-1) were identified by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Anti-VEGFR antibody-producing B cells were detectable by ELISPOT. Endothelial deposition of immunoglobulins developed within tumor. VEGF-mediated endothelial cell proliferation was inhibited in vitro by immunoglobulins from qVEGFR-immunized mice. Antitumor activity was caused by the adoptive transfer of the purified immunoglobulins. Antitumor activity and production of autoantibodies against Flk-1 could be abrogated by the depletion of CD4+ T lymphocytes. Angiogenesis was apparently inhibited within the tumors, and the vascularization of alginate beads was also reduced. No marked toxicity was found in the immunized mice. The observations may provide a vaccine strategy for cancer therapy through the induction of autoimmunity against the growth factor receptor associated with angiogenesis in a cross-reaction with single xenogeneic homologous protein.