Connexin43 (Cx43), the main protein constituting the gap junctions between astrocytes, has previously been demonstrated in endothelial cells of somatic vessels where the intercellular coupling that it provides plays a role in endothelial proliferation and migration. In this study, Cx43 expression was analysed in human brain microvascular endothelial cells of the cortical plate of 18-week foetal telencephalon, in adult cerebral cortex and glioma (astrocytomas). The study was carried out by immunocytochemistry utilizing a Cx43 monoclonal antibody and a polyclonal antibody anti-GLUT1 (glucose transporter isoform 1) to identify the endothelial cells and to localize Cx43. Endothelial Cx43 is differently expressed in the cortical plate, cerebral cortex and astrocytoma. Within the cortical plate and tumour, Cx43 is highly expressed in microvascular endothelial cells whereas it is virtually absent in the cerebral cortex microvessels. The high expression of the gap junction protein in developing brain, as well as in brain tumours, may be related to the growth status of the microvessels during brain and tumour angiogenesis. The lack of endothelial Cx43 in the cerebral cortex is in agreement with the characteristics of the mature brain endothelial cells that are sealed by tight junctions. In conclusion, the results indicate that endothelial Cx43 expression is developmentally regulated in the normal human brain and suggest that it is controlled by the microenvironment in both normal and tumour-related conditions.