The cellular prion protein PrPc is of crucial importance for the development of neurodegenerative diseases called transmissible spongiform encephalopathies. We investigated if the function of members of the HSP90 family is required for the integrity of the normal, nonpathogenic prion protein called PrPc. Eukaryotic cells were treated with the structurally unrelated HSP90-inhibitors geldanamycin (GA) or radicicol (RC). In either case the cellular prion protein was induced and exhibited faster migrating bands on western blot analysis, whereas geldampicin (GE), an analog of GA known not to bind to HSP90, had no effect. Ongoing protein and messenger RNA synthesis during treatment were found to be necessary for the appearance of these bands. Cotreatment with tunicamycin abrogated any effect of HSP90 inhibitors on the cellular prion protein. Finally, enzymatic deglycosylation with peptide:N-glycosidase F of the normal prion protein as well as the variant induced by benzoquinone ansamycins resulted in very similar band patterns. These experiments indicate that either altered glycosylation, or a change in conformation, or both are involved in the induction of faster migrating bands by HSP90 inhibitors. Thus the inhibition of the function of members of the HSP90 family of molecular chaperones results in profound changes in the physicochemical properties of PrPc.