Fukuyama-type congenital muscular dystrophy (FCMD), one of the most common autosomal-recessive disorders in Japan, is characterized by congenital muscular dystrophy associated with brain malformation due to a defect during neuronal migration. Through positional cloning, we previously identified the gene for FCMD, which encodes the fukutin protein. Here we report that chimeric mice generated using embryonic stem cells targeted for both fukutin alleles develop severe muscular dystrophy, with the selective deficiency of alpha-dystroglycan and its laminin-binding activity. In addition, these mice showed laminar disorganization of the cortical structures in the brain with impaired laminin assembly, focal interhemispheric fusion, and hippocampal and cerebellar dysgenesis. Further, chimeric mice showed anomaly of the lens, loss of laminar structure in the retina, and retinal detachment. These results indicate that fukutin is necessary for the maintenance of muscle integrity, cortical histiogenesis, and normal ocular development and suggest the functional linkage between fukutin and alpha-dystroglycan.