(1) Three cannabinoid receptor agonists, anandamide (CB(1) receptor-selective) and the aminoalkyl-indoles, JWH 015(2-methyl-1-propyl-1H-indol-3-yl)-1-napthalenylmethanone; (CB(2) receptor-selective), R-(+)-WIN 55,212-2 (R-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolol[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone; slightly CB(2) receptor-selective), as well as the enantiomer S-(-)-WIN 55,212-3(S-(-)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolol[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone; inactive at cannabinoid receptors), induced endothelium-independent relaxation of methoxamine-precontracted isolated small mesenteric artery of rat. KCL (60 mM) precontraction did not affect relaxation to the aminoalkylindoles, but reduced that to anandamide. (2) SR14176A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; 3 micro M; CB(1) receptor antagonist) inhibited relaxation only to JWH 015 and anandamide. Neither AM 251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; CB(1) antagonist) nor SR 144528 (N-[(1S)-endo-1,3,3-trimethyl bicyclo[2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide; CB(2) antagonist; both at 3 micro M) affected any of the relaxations. (3) Vanilloid receptor desensitisation with capsaicin reduced anandamide relaxation; addition of SR 141716A (3 micro M) then caused further inhibition. SR 141716A did not affect capsaicin-induced relaxation. (4) The aminoalkylindoles inhibited CaCl(2)-induced contractions in methoxamine-stimulated vessels previously depleted of intracellular Ca(2+). These inhibitory effects were greatly reduced or abolished in ionomycin-(a calcium ionophore) contracted vessels. Anandamide also caused vanilloid receptor-independent, SR 141716A- (3 micro M) insensitive, inhibition of CaCl(2) contractions. (5) In conclusion, the aminoalkylindoles JWH 015, R-(+)-WIN 55,212-2 and S-(-)-WIN 55,212-3 relax rat small mesenteric artery mainly by inhibiting Ca(2+) influx into vascular smooth muscle. Anandamide causes vasorelaxation by activating vanilloid receptors, but may also inhibit Ca(2+) entry. Relaxation to JWH 015 and anandamide was sensitive to SR 141716A, but there is no other evidence for the involvement of CB(1) or CB(2) receptors in responses to these compounds.