Integral membrane components SecY, SecE, and SecG of protein translocase form a complex in the Escherichia coli plasma membrane. To characterize subunit interactions of the SecYEG complex, a series of SecY variants having a single cysteine in its cytoplasmic (C1-C6) or periplasmic (P1-P5) domain were subjected to site-specific cross-linking experiments using bifunctional agents with thiol-amine reactivity. Experiments using inverted membrane vesicles revealed specific cross-linkings between a cysteine residue placed in the C2 or C3 domain of SecY and the cytosolic lysine (Lys26) near the first transmembrane segment of SecG. These SecY Cys residues also formed a disulfide bond with an engineered cytosolic cysteine at position 28 of SecG. Thus, the C2-C3 region of SecY is in the proximity of the N-terminal half of the SecG cytoplasmic loop. Experiments using spheroplasts revealed the physical proximity of P2 (SecY) and the C-terminal periplasmic region of SecG. In addition, mutations in secG were isolated as suppressors against a cold-sensitive mutation (secY104) affecting the TM4-C3 boundary of SecY. These results collectively suggest that a C2-TM3-P2-TM4-C3 region of SecY serves as an interface with SecG.