We propose a technique for the display of results of Kulldorff's spatial scan statistic and related cluster detection methods that provides a greater degree of informational content. By simultaneously considering likelihood ratio and relative risk, it is possible to identify focused sub-clusters of higher (or lower) relative risk among broader regional excesses or deficits. The result is a map with a nested or contoured appearance. Here the technique is applied to prostate cancer mortality data in counties within the contiguous United States during the period 1970-1994. The resulting map shows both broad and localized patterns of excess and deficit, which complements a choropleth map of the same data.