Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility

Endocrinology. 2003 Jul;144(7):2870-81. doi: 10.1210/en.2003-0043.

Abstract

Endometriosis is clinically associated with pelvic pain and infertility, with implantation failure strongly suggested as an underlying cause for the observed infertility. Eutopic endometrium of women with endometriosis provides a unique experimental paradigm for investigation into molecular mechanisms of reproductive dysfunction and an opportunity to identify specific markers for this disease. We applied paralleled gene expression profiling using high-density oligonucleotide microarrays to investigate differentially regulated genes in endometrium from women with vs. without endometriosis. Fifteen endometrial biopsy samples (obtained during the window of implantation from eight subjects with and seven subjects without endometriosis) were processed for expression profiling on Affymetrix Hu95A microarrays. Data analysis was conducted with GeneChip Analysis Suite, version 4.01, and GeneSpring version 4.0.4. Nonparametric testing was applied, using a P value of 0.05, to assess statistical significance. Of the 12,686 genes analyzed, 91 genes were significantly increased more than 2-fold in their expression, and 115 genes were decreased more than 2-fold. Unsupervised clustering demonstrated down-regulation of several known cell adhesion molecules, endometrial epithelial secreted proteins, and proteins not previously known to be involved in the pathogenesis of endometriosis, as well as up-regulated genes. Selected dysregulated genes were randomly chosen and validated with RT-PCR and/or Northern/dot-blot analyses, and confirmed up-regulation of collagen alpha2 type I, 2.6-fold; bile salt export pump, 2.0-fold; and down-regulation of N-acetylglucosamine-6-O-sulfotransferase (important in synthesis of L-selectin ligands), 1.7-fold; glycodelin, 51.5-fold; integrin alpha2, 1.8-fold; and B61 (Ephrin A1), 4.5-fold. Two-way overlapping layer analysis used to compare endometrial genes in the window of implantation from women with and without endometriosis further identified three unique groups of target genes, which differ with respect to the implantation window and the presence of disease. Group 1 target genes are up-regulated during the normal window of implantation but significantly decreased in women with endometriosis: IL-15, proline-rich protein, B61, Dickkopf-1, glycodelin, N-acetylglucosamine-6-O-sulfotransferase, G0S2 protein, and purine nucleoside phosphorylase. Group 2 genes are normally down-regulated during the window of implantation but are significantly increased with endometriosis: semaphorin E, neuronal olfactomedin-related endoplasmic reticulum localized protein mRNA and Sam68-like phosphotyrosine protein alpha. Group 3 consists of a single gene, neuronal pentraxin II, normally down-regulated during the window of implantation and further decreased in endometrium from women with endometriosis. The data support dysregulation of select genes leading to an inhospitable environment for implantation, including genes involved in embryonic attachment, embryo toxicity, immune dysfunction, and apoptotic responses, as well as genes likely contributing to the pathogenesis of endometriosis, including aromatase, progesterone receptor, angiogenic factors, and others. Identification and validation of selected genes and their functions will contribute to uncovering previously unknown mechanism(s) underlying implantation failure in women with endometriosis and infertility, mechanisms underlying the pathogenesis of endometriosis and providing potential new targets for diagnostic screening and intervention.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Northern
  • Embryo Implantation / physiology
  • Endometriosis / genetics*
  • Endometriosis / physiopathology*
  • Endometrium / physiopathology
  • Female
  • Gene Expression Profiling* / standards
  • Humans
  • Infertility, Female / genetics*
  • Infertility, Female / physiopathology*
  • Multigene Family
  • Reproducibility of Results