The expression of the connective tissue growth factor ( ctgf) gene increases along with the differentiation of growth cartilage cells, and the highest expression is observed in the hypertrophic stage. Similarly, recent reports demonstrated c- fos expression in chondrocytes in the early hypertrophic zone of growth cartilage, and suggested that the c- fos gene may play a crucial role in the regulation of hypertrophic differentiation. A chondrocytic human cell line, HCS-2/8, is known to retain a variety of chondrocytic phenotypes. When such cells were kept overconfluent, they expressed increasing levels of c- fos transcripts along a time course phenotypically similar to that of hypertrophic differentiation. Moreover, by using a competitive electromobility-shift assay, we found that AP-1, a Fos/Jun heterodimer, in HCS-2/8 was capable of binding not only to a typical AP-1-binding DNA fragment but also to the enhancer fragment of the ctgf gene. Based on the findings above, we hypothesize that, prior to hypertrophic differentiation, AP-1-related oncogenes are activated and that their gene products subsequently activate ctgf gene expression, which might eventually induce hypertrophy.