Although STAT1-dependent signaling mediates biological functions of IFN-alpha/beta and IFN-gamma, recent reports indicate that STAT1-independent IFN signaling also regulates expression of several genes. To determine the roles of STAT1-dependent and -independent IFN signaling in the regulation of immunity during cutaneous leishmaniasis, we studied the course of Leishmania major infection in resistant C57BL/6 mice lacking the STAT1 gene. While L. major-infected STAT1(+/+) mice resolved their lesions, STAT1(-/-) mice developed large lesions containing significantly more parasites. Moreover, the inability of STAT1(-/-) mice to control L. major infection was due to the lack of Th1 development associated with reduced production of IL-12, IFN-gamma and nitric oxide. Although STAT1(-/-) mice produced more IL-4 and total IgE than STAT1(+/+) mice later during infection, these differences were not significant. Nevertheless, at these time points lymph node cells from STAT1(-/-) mice produced significantly more IL-10. Finally, STAT1(-/-) mice were also susceptible to low dose L. major infection. Thesefindings demonstrate that STAT1-mediated IFN signaling is indispensable for the development of protective immunity against cutaneous L. major infection. Moreover, they also suggest that the protective role of STAT1-mediated signaling is due to its ability to induce Th1 development during infection with this parasite.