BRCA2 is a breast tumor susceptibility gene encoding a 390-kDa protein with functions in maintaining genomic stability and cell cycle progression. Evidence has been accumulated to support the concept that BRCA2 has a critical role in homologous recombination of DNA double-stranded breaks by interacting with RAD51. In addition, BRCA2 may have chromatin modifying activity through interaction with a histone acetyltransferase protein, p300/CBP-associated factor (P/CAF). To explore how the functions of BRCA2 may be regulated, the post-translational modifications of BRCA2 throughout the cell cycle were examined. We found that BRCA2 is hyperphosphorylated specifically in M phase and becomes dephosphorylated as cells exit M phase and enter interphase. This specific phosphorylation of BRCA2 was not observed in cells treated with DNA-damaging agents. Systematic mapping of the potential mitosis specific phosphorylation sites revealed the N-terminal 284 amino acids of BRCA2 (BR-N1) as the major region of phosphorylation and mass spectrometric analysis identified two phosphopeptides that contain "phosphorylation consensus motifs" for Polo-like kinase 1 (Plk1). Phosphorylation of BR-N1 with Plk1 recapitulated the electrophoretic mobility change as seen in BR-N1 isolated from M phase cells. Plk1 interacts with BRCA2 in vivo, and mutation of Ser193, Ser205/206, and Thr203/207 to Ala in BR-N1 abolished Plk1 phosphorylation, suggesting that BRCA2 is the substrate of Plk1. Furthermore, both the hyperphosphorylated and hypophosphorylated forms of BRCA2 bind to RAD51, whereas the M phase hyperphosphorylated form of BRCA2 no longer associates with the P/CAF, suggesting that the dissociation of P/CAF-BRCA2 complex is regulated by phosphorylation. Taken together, these results implicate a potential role of BRCA2 in modulating M phase progression.