The neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) inhibits inflammation by down-regulating the expression of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in leukocytes via stimulation of alpha-MSH cell surface receptors. However, the signaling mechanism of alpha-MSH action has not yet been clearly elucidated. Here, we have investigated signaling pathways by which alpha-MSH inhibits lipopolysaccharide (LPS)-induced TNF-alpha production in leukocytes such as THP-1 cells. We focused on the possible roles of protein kinase A (PKA), p38 kinase, and nuclear factor kappa B (NF kappa B) signaling. In THP-1 cells, LPS is known to activate p38 kinase, which in turn activates NF kappa B to induce TNF-alpha production. We found that pretreatment of cells with alpha-MSH blocked LPS-induced p38 kinase and NF kappa B activation as well as TNF-alpha production. This response was proportional to alpha-MSH receptor expression levels, and addition of an alpha-MSH receptor antagonist abolished the inhibitory effects. In addition, alpha-MSH treatment activated PKA, and PKA inhibition abrogated the inhibitory effects of alpha-MSH on p38 kinase activation, NF kappa B activation, and TNF-alpha production. Taken together, our results indicate that stimulation of PKA by alpha-MSH causes inhibition of LPS-induced activation of p38 kinase and NF kappa B to block TNF-alpha production.