Maturation of cardiovascular control mechanisms in the embryonic emu (Dromiceius novaehollandiae)

J Exp Biol. 2003 Aug;206(Pt 15):2703-10. doi: 10.1242/jeb.00476.

Abstract

Our understanding of avian embryonic cardiovascular regulation has been based on studies in chickens. The present study was undertaken to determine if the patterns established in chickens are generally applicable to the emu, a ratite bird species. We studied cardiovascular physiology over the interval from 60% to 90% of the emu's 50-day incubation period. During this period, embryonic emus exhibit a slight fall in resting heart rate (from 171 beats min(-1) to 154 beats min(-1)) and a doubling of mean arterial pressure (from 1.2 kPa to 2.6 kPa). Exposures to 15% or 10% O(2) initially decreased heart rate during the first period of emu incubation studied [60% of incubation (60%I)] but increased heart rate in the 90%I group. Arterial pressure responded to hypoxia with an initial depression (-1.6 kPa) at 60%I and 70%I but showed no response during the later periods of incubation (80%I and 90%I). In addition, tonic stimulation of both cholinergic and adrenergic (alpha and beta) receptors was present on heart rate at 70%I, with the cholinergic and beta-adrenergic tone increasing in strength by 90%I. Arterial pressure was dependent on a constant beta-adrenergic and constant alpha-adrenergic tone from 60%I to 90%I. A comparison with embryonic white leghorn chickens over a similar window of incubation revealed that emus and white leghorn chickens both possess an adrenergic tone on heart rate and pressure but that only emus possess a cholinergic tone on heart rate. Collectively, these data indicate that the maturation of cardiovascular control systems differs between white leghorn chickens and emus, inviting investigation of additional avian species to determine other patterns.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / physiology
  • Cardiovascular Physiological Phenomena*
  • Dromaiidae / embryology*
  • Dromaiidae / physiology*
  • Heart Rate / physiology
  • Receptors, Adrenergic / physiology
  • Receptors, Cholinergic / physiology

Substances

  • Receptors, Adrenergic
  • Receptors, Cholinergic