Bioartificial liver devices are alternative therapies for patients suffering from acute hepatic failure or metabolic defects. Here, we show a bioartificial device, developed with a cartridge used for pediatric hemofiltration and spheroids of porcine hepatocytes housed in the extracapillary space of the cartridge. The cartridge was attached to a robotic arm that supplied a continuous, oscillatory movement. It was connected through the capillary circulation to a neonatal membrane oxygenator contain-ing human blood supplemented with ammonium and diazepam. A decrease in ammonium concentration was observed, reaching an almost 70% decrease upon 9 h of operation. In addition, urea was detected and diazepam metabolism proved from the fourth hour of operation. It is worth mentioning that the system described was assembled with commercially available components for current clinical use. The setup may be done in a short period, thus eliminating long-term culture times and the need for cell anchoring to matrices.