Objective: Stabilization of the mitochondria in IL-3-dependent hematopoietic progenitor cell line 32D cl 3 by overexpression of the transgene for manganese superoxide dismutase (MnSOD) prior to ionizing radiation prevents apoptosis. We now demonstrate that overexpression of the MnSOD transgene also protects 32D cl 3 cells from apoptosis caused by exposure to tumor necrosis factor-alpha (TNF-alpha) or withdrawal of interleukin (IL)-3.
Materials and methods: The hematopoietic progenitor cell line, 32D cl 3, and subclones overexpressing the human MnSOD transgene, 1F2 or 2C6, were radiated to 1000 cGy or were exposed to TNF-alpha (0 to 100 etag/mL) or were subjected to IL-3 withdrawal. The cells were then examined at several time points for DNA strand breaks using a comet assay, depolarization of the mitochondrial membrane, activation of caspase-3, PARP cleavage, and apoptosis, and also for changes in cell cycle distribution.
Results: Overexpression of the transgene for MnSOD resulted in increased survival following exposure to radiation, exposure to TNF-alpha, or IL-3 withdrawal. The cell lines overexpressing MnSOD (1F2 or 2C6) displayed decreased radiation-induced, TNF-alpha-induced, or IL-3 withdrawal-induced mitochondrial membrane permeability, caspase-3 and PARP activation, and apoptosis.
Conclusions: Overexpression of the human MnSOD transgene in 32D cl 3 cells results in stabilization of the mitochondria and reduction in radiation-, TNF-alpha-, or IL-3 withdrawal-induced damage. Thus, MnSOD stabilization of the mitochondrial membrane is relevant to reduction of apoptosis by several classes of oxidative stress inducers.