Dairy products are a potential matrix for folate fortification to enhance folate consumption in the Western world. Milk folate-binding proteins (FBP) are especially interesting because they seem to be involved in folate bioavailability. In this study, folate bioaccessibility was investigated using a dynamic computer-controlled gastrointestinal model [TNO gastrointestinal model (TIM)]. We used both ultrahigh temperature (UHT)-processed milk and pasteurized milk, differing in endogenous FBP concentrations and fortified with folic acid or 5-methyltetrahydrofolate (5-CH(3)-H(4)folate). To study FBP stability during gastrointestinal passage and the effect of additional FBP on folate bioaccessibility, FBP-fortified UHT and pasteurized milk products were also tested. Folate bioaccessibility and FBP stability were measured by taking samples along the compartments of the gastrointestinal model and measuring their folate and FBP concentrations. Folate bioaccessibility from folic acid-fortified milk products without additional FBP was 58-61%. This was lower (P < 0.05) than that of the 5-CH(3)-H(4)folate-fortified milk products (71%). Addition of FBP reduced (P < 0.05) folate bioaccessibility from folic acid-fortified milk (44-51%) but not from 5-CH(3)-H(4)folate-fortified milk products (72%). The residual FBP levels in the folic acid- and 5-CH(3)-H(4)folate-fortified milk products after gastrointestinal passage were 13-16% and 0-1%, respectively, of the starting amounts subjected to TIM. In conclusion, milk seems to be a suitable carrier for folate, because both folic acid and 5-CH(3)-H(4)folate are easily released from the matrix and available for absorption. However, our results suggest that folic acid remains partly bound to FBP during passage through the small intestine, which reduces the bioaccessibility of folic acid from milk in this model.