Hematopoietic stem cells and other hematopoietic cells show broad resistance to chemotherapeutic agents in vivo when overexpressing bcl-2

Exp Hematol. 2003 Jul;31(7):631-9. doi: 10.1016/s0301-472x(03)00084-5.

Abstract

Objective. Chemotherapeutic agents function by inducing apoptosis and their effectiveness depends on the balance of pro- and anti-apoptotic proteins in cells. Due to the complicated interactions of the many proteins involved, it has been difficult to determine in tumors whether overexpression of single genes is prognostic for increased resistance. Therefore, we studied the influence of bcl-2 overexpression on resistance to chemotherapeutics in a transgenic mouse system. This allowed us to study a wide variety of cells, including important but rare populations such as hematopoietic stem cells (HSC).Methods. H2K-bcl-2 transgenic and wild-type (WT) mice were treated with several agents(5-fluoruracil, cyclophosphamide, and busulfan) to determine the contribution of increased amounts of bcl-2 to the response to these chemotherapeutics in vivo. Populations were enumerated using flow cytometry. HSC were studied by FACS purification and long-term reconstitution assays in vivo and resistance was confirmed by short-term proliferation assays with different amounts of chemotherapeutics in vitro.Results. bcl-2 overexpression alone protects many cell types, though protection levels differ between populations and agents. However, even sensitive populations return to pretreatment levels faster in transgenic mice. bcl-2 overexpression also prevents the dramatic changes in HSC following 5-FU treatment (downregulation of c-kit, upregulation of Lin, less efficient long-term reconstitution). In vitro studies directly demonstrate increased resistance of bcl-2 overexpressing HSC to chemotherapeutic agents.Conclusions. Increased expression of bcl-2 in HSC and their progeny endows these cells with broad resistance to chemotherapeutic agents. The ability to (differentially) regulate sensitivity to apoptosis of bystander and tumor cells is clinically important.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Flow Cytometry
  • Genes, bcl-1*
  • Hematopoietic Stem Cells / drug effects*
  • Hematopoietic Stem Cells / metabolism
  • Mice
  • Mice, Transgenic

Substances

  • Antineoplastic Agents