Two receptors, neuropilin 1 (NP1) and neuropilin 2 (NP2), bind class 3 semaphorins, axon guidance molecules including SEMA3F, the gene for which was isolated from a 3p21.3 deletion in lung cancer. In addition, they bind VEGF (vascular endothelial growth factor), enhancing the effects of VEGF binding to KDR/Flk-1. Elevated VEGF levels are associated with the loss and cytoplasmic delocalization of SEMA3F in lung cancer, suggesting competition for their NP1 and NP2 receptors. To determine the timing of these events, we compared by immunohistochemistry VEGF, SEMA3F, NP1 and NP2 expression in 50 preneoplastic lesions and 112 lung tumours. In preneoplastic lesions, VEGF increased from low-grade to high-grade dysplasia (p=0.001) whereas SEMA3F levels remained low. NP1 and NP2 levels increased from dysplasia to microinvasive carcinoma (p=0.0001) and correlated with VEGF expression (p=0.04 and 0.0002, respectively). Non-small cell lung carcinoma overexpressed VEGF and NP1 and NP2 significantly more often than neuroendocrine tumours including small cell lung carcinoma. SEMA3F loss or delocalization correlated with advanced tumour stage. Migrating cells overexpressed VEGF, SEMA3F, NP1 and NP2 with cytoplasmic delocalization of NP1 as demonstrated in an in vitro wound assay. These results demonstrate early alteration of the VEGF/SEMA3F/NP pathway in lung cancer progression.
Copyright 2003 John Wiley & Sons, Ltd.