(5R)-Carbapen-2-em-3-carboxylic acid is the simplest structurally among the naturally occurring carbapenem beta-lactam antibiotics. It co-occurs with two saturated (3S,5S)- and (3S,5R)-carbapenam carboxylic acids. Confusion persists in the literature about the signs of rotation and absolute configurations of these compounds that is resolved in this paper. (3S,5S)-Carbapenam carboxylic acid was prepared from L-pyroglutamic acid to unambiguously establish its absolute configuration as identical to the natural product isolated from Serratia marcescens and from overexpression of the biosynthetic genes carAB in Escherichia coli. L-Proline labeled with deuterium or tritium at the diastereotopic C-5 methylene loci was shown to incorporate one label at the bridgehead of (3S,5S)-carbapenam carboxylic acid, but not into the "inverted" (3S,5R)-carbapenam carboxylic acid or the final carbapenem product. CarC, the third enzyme of the biosynthetic pathway required to synthesize the carbapenem, was demonstrated in cell-free studies to be dependent on alpha-ketoglutarate and ascorbate in keeping with weak sequence identities with other non-heme iron, alpha-ketoglutarate-dependent oxygenases. CarC mediated the stereoinversion of synthetic (3S,5S)-carbapenam carboxylic acid to the (5R)-carbapenem as judged by bioassay. These findings suggest that L-proline is desaturated to pyrroline-5-carboxylic acid prior to uptake into the biosynthetic pathway. The loss of the bridgehead hydrogen from the (3S,5S)-carbapenam during the ring inversion process to form the epimeric (3S,5R)-carbapenam and desaturation to the (5R)-carbapenem are proposed to be coupled by CarC to the reduction of dioxygen to drive the formation of these higher energy products, an unprecedented reaction for this enzyme class.