Background: Fear conditioning is a traditional model for the acquisition of fears and phobias. Studies of the genetic architecture of fear conditioning may inform gene-finding strategies for anxiety disorders. The objective of this study was to determine the genetic and environmental sources of individual differences in fear conditioning by means of a twin sample.
Methods: Classic fear conditioning data were experimentally obtained from 173 same-sex twin pairs (90 monozygotic and 83 dizygotic). Sequences of evolutionary fear-relevant (snakes and spiders) and fear-irrelevant (circles and triangles) pictorial stimuli served as conditioned stimuli paired with a mild electric shock serving as the unconditioned stimulus. The outcome measure was the electrodermal skin conductance response. We applied structural equation modeling methods to the 3 conditioning phases of habituation, acquisition, and extinction to determine the extent to which genetic and environmental factors underlie individual variation in associative and nonassociative learning.
Results: All components of the fear conditioning process in humans demonstrated moderate heritability, in the range of 35% to 45%. Best-fitting multivariate models suggest that 2 sets of genes may underlie the trait of fear conditioning: one that most strongly affects nonassociative processes of habituation that also is shared with acquisition and extinction, and a second that appears related to associative fear conditioning processes. In addition, these data provide tentative evidence of differences in heritability based on the fear relevance of the stimuli.
Conclusion: Genes represent a significant source of individual variation in the habituation, acquisition, and extinction of fears, and genetic effects specific to fear conditioning are involved.