1. Human airway smooth muscle cells (HASMC) contribute to airway inflammation in asthma by virtue of their capacity to produce several inflammatory mediators including IL-8, GM-CSF and RANTES. The intracellular signal pathway underlying the production of these cytokines in HASMC is not entirely elucidated. 2. We examined the role of the mitogen-activated protein kinase (MAPK) c-jun N-terminal kinase (JNK) in TNFalpha- and IL-1beta-induced GM-CSF, RANTES and IL-8 production in HASMC by using a novel specific inhibitor for JNK (SP600125). 3. Confluent HASMC were treated with TNFalpha or IL-1beta (10 ng ml(-1)) for 24 h in the presence or absence of SP600125 (1-100 micro M). JNK activity was determined by a kinase assay. Phosphorylation of JNK, p38 MAPK and ERK was examined by Western blotting. Culture supernatants were assayed for GM-CSF, RANTES and IL-8 content by ELISA. 4. Maximum TNFalpha- or IL-1beta-induced phosphorylation of JNK in HASMC occurred after 15 min and returned to baseline levels after 4 h. SP600125 inhibited TNFalpha- and IL-1beta-induced JNK activity in HASMC as shown by the reduced phosphorylation of its substrate c-jun. Furthermore, GM-CSF, RANTES and to a lesser extent IL-8 release from HASMC treated with TNFalpha and IL-1beta was inhibited dosedependently by SP600125. 5. JNK activation is involved in TNFalpha- and IL-1beta-induced GM-CSF, RANTES and IL-8 production from HASMC. JNK may therefore represent a critical pathway for cytokine production in HASMC.