In this study, we investigated the signalling pathways induced by ultraviolet B (UVB) and the effects of sphingosine-1-phosphate on UVB-induced apoptosis of mouse melanocytes, Mel-Ab, and observed the cytoprotective effects of sphingosine-1-phosphate on UVB-induced apoptosis. Since sphingosine-1-phosphate is a well-known mitogenic agent, we thought it possible that the mitogenic effect of sphingosine-1-phosphate might contribute to cell survival. However, we found that sphingosine-1-phosphate significantly inhibits DNA synthesis. We next examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by sphingosine-1-phosphate against UVB-induced apoptosis. UVB irradiation resulted in the remarkable and sustained activation of c-Jun N-terminal kinase (JNK), while p38 MAP kinase was only transiently activated. The basal level of extracellular signal-regulated protein kinase (ERK) phosphorylation decreased 30 min after UVB irradiation, whereas the basal level of Akt phosphorylation was unaffected by UVB. We also found that sphingosine-1-phosphate potently stimulates the phosphorylation of both ERK and Akt, which are involved in the cell survival-signalling cascade. Furthermore, the specific inhibition of the ERK and Akt pathways by PD98059 and LY294002, respectively, restored the cytoprotective effect induced by sphingosine-1-phosphate. On the other hand, the p38 inhibitor SB203580 additively enhanced the cytoprotective effect on sphingosine-1-phosphate. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that sphingosine-1-phosphate probably exert its cytoprotective effect in Mel-Ab cells through ERK and Akt activation.