Background: Tracheal pressure (P(tr)) is required to measure the resistance of the tracheal tube and the breathing circuit. P(tr) can either be measured with a catheter or, alternatively, calculated from the pressure-flow data available from the ventilator.
Methods: Calculated P(tr) was compared with measured P(tr) during controlled ventilation and assisted spontaneous breathing in 18 healthy and surfactant-depleted piglets. Their lungs were ventilated using different flow patterns, tidal volumes (V(T)) and levels of positive end-expiratory pressure.
Results: In terms of the root mean square error (RMS), indicating the average deviation of calculated from measured P(tr), the difference between calculated and measured P(tr) was 0.6 cm H(2)O (95%CI 0.58-0.65) for volume-controlled ventilation; 0.73 cm H(2)O (0.72-0.75) for pressure support ventilation; and 0.78 cm H(2)O (0.75-0.80) for bi-level positive airway pressure ventilation.
Conclusion: The good agreement between calculated and measured P(tr) during varying conditions, suggests that calculating P(tr) could help setting the ventilator and choosing the appropriate level of support.