Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects

J Control Release. 2003 Jul 31;90(3):281-90. doi: 10.1016/s0168-3659(03)00153-6.

Abstract

The beta- and gamma-irradiation effects on stability of microspheres made of poly(lactide-co-glycolide) 50:50 copolymer (PLGA) containing bupivacaine (BU) were studied. Microspheres containing 10, 25, and 40% w/w, respectively, of BU were prepared by spray drying and irradiated in air with beta- and gamma-irradiation at a dose of 25 kGy. Morphology (atomic force microscopy, particle-size analysis), physico-chemical characteristics (DSC and FT-IR spectroscopy), drug content and in vitro dissolution profile of microspheres were all determined; the stability of irradiated microspheres was evaluated over a 9-month period. The decrease of BU content in gamma-irradiated microspheres was almost always constant independent of the amount of BU per sample, therefore it was in inverse proportion to drug loading (range between 5 and 15%). BU release rate increased immediately after irradiation and increased slightly until 90 days of storage. As far as beta-irradiated microspheres are concerned, BU content decreased in a significant way (approximately 3%) only in microspheres containing 10% w/w of BU. Immediately after irradiation, drug release rate in beta-irradiated microspheres increased less than in the corresponding gamma-irradiated microspheres, and it did not change further over the following storage period. BU-loaded microspheres have been shown to be more stable against beta- than gamma-irradiation. AFM revealed that the surface roughness of the irradiated microspheres increases depending on irradiation. As such, if a parameter is quantifiable, it is proposed as a marker of degradation due to ionizing radiation.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anesthetics, Local / chemistry*
  • Beta Particles*
  • Bupivacaine / chemistry*
  • Calorimetry, Differential Scanning
  • Drug Carriers
  • Drug Stability
  • Gamma Rays*
  • Glycolates / chemistry
  • Glycolates / radiation effects*
  • Lactic Acid
  • Microspheres
  • Polyglycolic Acid
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Spectroscopy, Fourier Transform Infrared
  • Sterilization / methods
  • Temperature
  • Time Factors

Substances

  • Anesthetics, Local
  • Drug Carriers
  • Glycolates
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Bupivacaine