Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and TNF-alpha induced monocytic maturation of primary normal CD34-derived myeloid precursors and of the M2/M3-type acute myeloid leukemia HL-60 cell line, associated to increased nuclear factor (NF)-kappaB activity and nuclear translocation of p75, p65, and p50 NF-kappaB family members. Consistently, both cytokines also induced the degradation of the NF-kappaB inhibitors, IkappaBalpha and IkappaB epsilon, and up-regulated the surface expression of TRAIL-R3, a known NF-kappaB target. However, NF-kappaB activation and IkappaB degradation occurred with different time-courses, since TNF-alpha was more potent, rapid, and transient than TRAIL. Of the two TRAIL receptors constitutively expressed by HL-60 (TRAIL-R1 and TRAIL-R2), only the former was involved in IkappaB degradation, as demonstrated by using agonistic anti-TRAIL receptor antibodies. Moreover, NF-kappaB nuclear translocation induced by TRAIL but not by TNF-alpha was abrogated by z-IETD-fmk, a caspase-8-specific inhibitor. The key role of NF-kappaB in mediating the biological effects of TNF-alpha and TRAIL was demonstrated by the ability of unrelated pharmacological inhibitors of the NF-kappaB pathway (parthenolide and MG-132) to abrogate TNF-alpha- and TRAIL-induced monocytic maturation. These findings demonstrate that NF-kappaB is essential for monocytic maturation and is activated via distinct pathways, involving or not involving caspases, by the related cytokines TRAIL and TNF-alpha.