The hobo transposable element contains a polymorphic microsatellite sequence located in its coding region, the TPE repeats. Previous surveys of natural populations of Drosophila melanogaster have detected at least seven different hobo transposons. These natural populations are geographically structured with regard to TPE polymorphism, and a scenario has been proposed for the invasion process. Natural populations have recently been completely invaded by hobo elements with three TPE repeats. New elements then appeared by mutation, triggering a new stage of invasion by other elements. Since TPE polymorphism appeared over a short period of time, we focused on estimating the mutation rate of these TPE repeats. We used transgenic lines harboring three TPE and/or five TPE hobo elements that had been evolving for at least 16 generations to search for a new TPE repeat polymorphism. We detected three mutants, with four, seven, and eight TPE repeats, respectively. The estimated mutation rate of the TPE repeats is therefore higher than that of neutral microsatellites in D. melanogaster (4.2 x 10-4 versus 6.5 x 10-6). The role of the transposition mechanism and the particular structure of the TPE repeats of the hobo element in this increase in the mutation rate are discussed.