We found that dioxiranes generated in situ from ketones 1-6 and Oxone underwent intramolecular oxidation of unactivated C-H bonds at delta sites of ketones to yield tetrahydropyrans. From the trans/cis ratio of oxidation products 1a and 2a as well as the retention of the configuration at the delta site of ketone 5, we proposed that the oxidation reaction proceeds through a concerted pathway under a spiro transition state. The intramolecular oxidation of ketone 6 showed the preference for a tertiary delta C-H bond over a secondary one. This intramolecular oxidation method can be extended to the oxidation of the tertiary gamma' C-H bond of ketones 9 and 10. For ketone 11 with two delta C-H bonds and one gamma' C-H bond linked respectively by a sp(3) hydrocarbon tether and a sp(2) ester tether, the oxidation took place exclusively at the delta C-H bonds. Finally, by introducing proper tethers, regioselective hydroxylation of steroid ketones 12-14 have been achieved at the C-17, C-16, C-3, and C-5 positions.