A chiral capillary electrophoresis method has been developed for the simultaneous separation of the enantiomers of deprenyl and eight of its metabolites, among them the recently described metabolite deprenyl-N-oxide. Although heptakis-(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) was suitable for the enantioresolution of deprenyl and its dealkylated derivatives, the enantiomers of deprenyl-N-oxide were just partly resolved. Carboxymethyl-beta-cyclodextrin (CMBCD) in as low as 2 mM concentration was capable of the enantiomer separation of all the nine examined compounds, however co-migration of 1R,2S-(-)-norephedrine and 1R,2R-(-)-pseudoephedrine, as well as 1S,2R-(+)-ephedrine and R-(-)-amphetamine was observed. This problem could be overcome by the use of a dual cyclodextrin system containing 4 mM DIMEB in addition to 2 mM CMBCD; simultaneous separation of all the compounds could be achieved. The optimized method was used for the analysis of rat urine samples after 10 days of treatment of animals with either R-(-)- or S-(+)-deprenyl. The stereospecific biotransformation of both deprenyl enantiomers was confirmed, and the stereoselectivity of N-oxide formation was demonstrated.