The continued discovery of basic pathologic mechanisms underlying neuropsychiatric illnesses will be critical to the development of improved diagnostic tests and more targeted therapeutic strategies. Molecular biological methods capable of evaluating gene expression at the single-cell level have great potential for advancing our knowledge of these processes. This review describes two techniques that are providing new insights into the intracellular regulation of ribonucleic acid trafficking and processing. These technologies promise to accelerate our understanding of both normal and abnormal molecular processes within neurons, and they have the potential for direct application to the study of human neurologic disease.