The aim of this study was to formulate nanoparticles from poly(l)lactide by a modified nanoprecipitation method. The main focus was to study the effect of cosolvent selection on the shape, size, formation efficiency, degree of crystallinity, x-ray diffraction (XRD) reflection pattern, and zeta potential value of the particles. Low-molecular-weight (2000 g/mol) poly(l)lactide was used as a polymer, and sodium cromoglycate was used as a drug. Acetone, ethanol, and methanol were selected as cosolvents. Optimal nanoparticles were achieved with ethanol as a cosolvent, and the formation efficiency of the particles was also higher with ethanol as compared with acetone or methanol. The particles formulated by ethanol and acetone appeared round and smooth, while with methanol they were slightly angular. When the volume of the inner phase was decreased during the nanoprecipitation process, the mean particle size was also decreased with all the solvents, but the particles were more prone to aggregate. The XRD reflection pattern and the degree of crystallinity were more dependent on the amount of the solvents in the inner phase than on the properties of the individual cosolvents. The zeta potential values of all the particle batches were slightly negative, which partially explains the increased tendency toward particle aggregation.