Induction of potent and sustained antiviral or antitumor immunity is dependent on the efficient activation of CD8+ and CD4+ T cells. While dendritic cells constitute a powerful platform for stimulating cellular immunity, presentation of endogenous antigens by dendritic cells transfected with nucleic acid-encoded antigens favors the stimulation of CD8+ T cells over that of CD4+ T cells. A short incubation of mRNA-transfected dendritic cells with antisense oligonucleotides directed against the invariant chain enhances the presentation of mRNA-encoded class II epitopes and activation of CD4+ T-cell responses in vitro and in vivo. Immunization of mice with the antisense oligonucleotide-treated dendritic cells stimulates a more potent and longer lasting CD8+ cytotoxic T-cell (CTL) response and enhances the antitumor efficacy of dendritic cell-based tumor vaccination protocols. Transient inhibition of invariant chain expression represents a simple and general method to enhance the stimulation of CD4+ T-cell responses from endogenous antigens.