Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru(II)-BQ-Co(III)), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru(II)-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru(II)-BQ (4) and PTZ-Ru(II) (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(f) = 5 x 10(9) s(-)(1) (tau(f) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) approximately 4.5 x 10(8) s(-)(1) (tau(b) approximately 2.2 ns), for both Ru(II)-BQ and Ru(II)-BQ-Co(III) with no indication of a charge shift to generate the reduced Co(II) moiety. In the PTZ-Ru(II)-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-)(1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(*)(+)-Ru(II)-BQ(*)(-) state (tau = 80 ns) in unusually high yield for a [Ru(bpy)(3)](2+)-based triad (> 90%), that lies at DeltaG degrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(*)(+) and the BQ(*)(-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru(II) a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru(II) state and 18% in the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state was thus faster than what would have been inferred from the Ru(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru(II) and PTZ-Ru(II)-acceptor complexes in the literature might need to be reconsidered.