Structural variations of potassium aryloxides

Inorg Chem. 2003 Aug 25;42(17):5357-66. doi: 10.1021/ic034222k.

Abstract

A series of potassium aryloxides (KOAr) were isolated from the reaction of a potassium amide (KN(SiMe(3))(2)) and the desired substituted phenoxide (oMP, 2-methyl; oPP, 2-iso-propyl; oBP, 2-tert-butyl; DMP, 2,6-di-methyl; DIP, 2,6-di-iso-propyl; DBP, 2,6-di-tert-butyl) in tetrahydrofuran (THF) or pyridine (py) as the following: [([K(mu(4)-oMP)(THF)][K(mu(3)-oMP)])(5)]( infinity ) (1), [[K(6)(eta(6),mu(3)-oMP)(4)(eta(6),mu(4)-oMP)(2)(py)(4)].[K(6)(eta(6),mu(3)-oMP)(6)(eta(6)-py)(4)]]( infinity ) (2), [K(mu(3)-oPP)](4)(THF)(3) (3), [K(4)(eta(6),mu(3)-oPP)(2)(mu(3)-oPP)(2)(py)(3)]( infinity ) (4), [K(mu(3)-oBP)(THF)](6) (5), [K(6)(eta(6),mu(3)-oBP)(2)(mu(3)-oBP)(4)(py)(4)]( infinity ) (6), [K(3)(eta(6),mu(3)-DMP)(2)(mu-DMP)(THF)]( infinity ) (7), [[K(eta(6),mu-DMP)(py)](2)]( infinity ) (8), [K(eta(6),mu-DIP)]( infinity ) (9), [K(eta(6),mu-DBP)]( infinity ) (10). Further exploration of the aryl interactions led to the investigation of the diphenylethoxide (DPE) derivative which was isolated as [K(mu(3)-DPE)(THF)](4) (11) or [K(mu(3)-DPE)(py)](4).py(2) (12) depending on the solvent used. In general, the less sterically demanding ligands (oMP, oPP, oBP, and DMP) were solvated polymeric species; however, increasing the steric bulk (DIP and DBP) led to unsolvated polymers and not discrete molecules. For most of this novel family of compounds, the K atoms were pi-bound to the aryl rings of the neighboring phenoxide derivatives to fill their coordination sites. The synthesss and characterization of these compounds are described in detail.