Canine parasitic zoonoses pose a continuing public health problem, especially in developing countries and communities that are socioeconomically disadvantaged. Our study combined the use of conventional and molecular epidemiological tools to determine the role of dogs in transmission of gastrointestinal (GI) parasites such as hookworms, Giardiaand Ascarisin a parasite endemic tea-growing community in northeast India. A highly sensitive and specific PCR-RFLP was developed to detect and differentiate the zoonotic species of canine hookworm eggs directly from faeces. This allowed epidemiological screening of canine hookworm species in this community to be conducted with ease and accuracy. Seventy two percent of dogs were found to harbour A. caninum, 60% A. braziliense and 37% harboured mixed infections with both hookworms. No A. ceylanicum was detected in the dog population. The zoonotic potential of canine Giardiawas also investigated by characterising Giardia duodenalisrecovered from humans and dogs living in the same locality and households, at three different loci. Phylogenetic and epidemiological analysis provided compelling evidence to support the zoonotic transmission of canine Giardia. Molecular tools were also used to identify the species of Ascarisegg present in over 30% of dog faecal samples. The results demonstrated the role of dogs as a significant disseminator and environmental contaminator of Ascaris lumbricoidesin communities where promiscuous defecation practices exist. Our study demonstrated the usefulness of combining conventional and molecular parasitological and epidemiological tools to help solve unresolved relationships with regards to parasitic zoonoses.