A combined stochastic-deterministic model able to predict the growth curve of microorganisms, from inoculation to death, is presented. The proposed model is based on the assumption that microorganisms can experience two different physiological states: non-proliferating and proliferating. The former being the physiological state of the cells right after their inoculation into the new extracellular environment; the latter the state of microorganisms after adaptation to the new medium. To validate the model, a Lactobacillus bulgaricus strain was tested in a medium at pH 4.6 at two different temperatures (42 degrees C and 35 degrees C). Curves representing the bacterial growth cycle were satisfactorily fitted by means of the proposed model. Moreover, due to the mechanistic structure of the proposed model, valuable quantitative information on the following was obtained: rate of conversion of non-proliferating cells into proliferating cells, growth and death rate of proliferating cells, and rate of nutrient consumption.