Somatostatin and its analogue octreotide have been used for two decades to treat oesophageal variceal haemorrhage. The drug was introduced because of its capacity to decrease portal venous pressure without major side effects. In clinical trials assessing the efficacy of somatostatin and long-acting analogues in arresting variceal haemorrhage, conflicting results have been obtained. Furthermore, in haemodynamic studies evaluating the effects of somatostatin and analogues in patients with cirrhosis, divergent effects were observed. The main reason for these differences is probably related to different affinities of the drugs for different somatostatin receptor subtypes. The effects of somatostatin and analogues are mediated via five different G-protein coupled receptors (somatostatin receptor subtypes 1-5), which regulate the activity of ion channels (Ca2+, K+, Na+ and Cl-) and enzymes (adenyl cyclase, phospholipase C, phospholipase A2, phosphoinositide 3-kinase and guanylate cyclase) responsible for the synthesis or degradation of intracellular second messengers including cyclic AMP, inositol 1,4,5-trisphosphate, diacylglycerol and cyclic GMP. Despite universal use of somatostatin, the cellular and biochemical mechanisms of its effects in portal hypertension are relatively poorly studied and remain incompletely understood. In this review, we summarize relevant signal transduction of somatostatin and analogues, the haemodynamic effects of the drugs and the possible mechanisms by which these effects are mediated.