NHERF-1 is required for renal adaptation to a low-phosphate diet

Am J Physiol Renal Physiol. 2003 Dec;285(6):F1225-32. doi: 10.1152/ajprenal.00215.2003. Epub 2003 Sep 2.

Abstract

The sodium-dependent renal phosphate transporter (Npt2, Na-Pi IIa) is the major regulated phosphate transporter in the renal proximal convoluted tubule. Npt2 associates with a number of PDZ-containing proteins including Na+H+ exchanger regulatory factor-1 (NHERF-1). To determine whether NHERF-1 is involved in the acute regulation of phosphate transport, wild-type and NHERF-1 (-/-) mice were stabilized on a high-phosphate diet and then acutely changed to a low-phosphate diet. At 24 h after the change to a low-phosphate diet, there was a significant decrease in the urinary excretion of phosphate in both groups but the urinary excretion of phosphate in NHERF-1 (-/-) mice was significantly higher than in wild-type animals (1,097 +/- 356 vs. 255 +/- 54 ng/min, P < 0.05). Renal mRNA levels and total cellular Npt2 protein did not differ between the animal groups or in response to the changes in diet. Renal brush-border membrane (BBM) expression of Npt2 protein, however, was lower in NHERF-1 (-/-) mice compared with wild-type. In addition, with both the high- and low-phosphate diets, there was increased detection of Npt2 in submicrovillar domains that were particularly prominent in NHERF-1 (-/-) mice compared with wild-type animals. On the other hand, a change from a low-phosphate diet to a high-phosphate diet was associated with a similar increase in the urinary excretion of phosphate in wild-type and NHERF-1 (-/-) animals. These experiments demonstrate that full renal adaptation to a low-phosphate diet requires NHERF-1, which serves to increase BBM expression of Npt2.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Diet
  • Kidney / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • Phosphates / metabolism
  • Phosphates / pharmacology*
  • Phosphoproteins / genetics*
  • Phosphoproteins / metabolism*
  • RNA, Messenger / analysis
  • Sodium-Hydrogen Exchangers
  • Sodium-Phosphate Cotransporter Proteins
  • Sodium-Phosphate Cotransporter Proteins, Type I
  • Sodium-Phosphate Cotransporter Proteins, Type III
  • Symporters / metabolism

Substances

  • Phosphates
  • Phosphoproteins
  • RNA, Messenger
  • Slc17a2 protein, mouse
  • Sodium-Hydrogen Exchangers
  • Sodium-Phosphate Cotransporter Proteins
  • Sodium-Phosphate Cotransporter Proteins, Type I
  • Sodium-Phosphate Cotransporter Proteins, Type III
  • Symporters
  • sodium-hydrogen exchanger regulatory factor