Alcoholic liver disease is associated with hepatic iron accumulation, and iron supplementation exacerbates alcoholic liver disease, suggesting the pathogenic role of iron in alcoholic liver disease. We have tested a hypothesis that iron plays a signaling role in activation of redox-sensitive nuclear factor-kappa B (NF-kappaB) and that increased iron content results in heightened expression of proinflammatory cytokines in Kupffer cells because of this signaling. In cultured Kupffer cells isolated from normal rats, treatment with a lipophilic iron chelator, 1,2-dimethyl-3-hydroxypyrid-4-one (L1), markedly reduced lipopolysaccharide (LPS)-induced NF-kappaB activation and expression of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6. Kupffer cells, isolated from rats with experimentally induced alcoholic liver disease, had significant increases in nonheme iron content, NF-kappaB binding, and mRNA expression for TNF-alpha and macrophage inflammatory protein-1. Ex vivo L1 treatment normalized all these parameters. Addition of ferrous iron to cultured normal rat Kupffer cells increased I-kappa B kinase (IKK) activity at 15 min and NF-kappaB binding at 30 min. L1 pretreatment completely abrogated both effects. Moreover, the iron treatment increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Ferrous iron also transiently decreased cytoplasmic I-kappa B-alpha (IkappaB-alpha), with concomitant increases in nuclear p65 protein and DNA binding of p65/p50. Taken together, these results support the existence of iron-dependent signaling for activation of IKK/NF-kappaB in Kupffer cells, and this iron signaling serves as a target for a potential priming effect for the pathogenesis of experimental alcoholic liver disease.