Activins are formed by dimerization of beta-subunits and, as members of the TGF-beta superfamily, have diverse roles as potent growth and differentiation factors. As the biological function of the activin C homodimer (betaC-betaC) is unknown, we sought to compare activin A (betaA-betaA), B (betaB-betaB), and C homodimer bioactivities and to investigate the consequences of activin betaC-subunit overexpression in prostate tumor cells. Exogenous activin A and B homodimers inhibited cell growth and activated activin-responsive promoters. In contrast, the activin C homodimer was unable to elicit these responses. We previously showed that the activin betaC-subunit heterodimerized with activin betaA in vitro to form activin AC. Therefore, we hypothesize that the activin betaC-subunit regulates the levels of bioactive activin A by the formation of activin AC heterodimers. To test this hypothesis, we measured activin AC heterodimer production using a novel specific two-site ELISA that we developed for this purpose. In the PC3 human prostate tumor cell line, activin betaC-subunit overexpression increased activin AC heterodimer levels, concomitantly reduced activin A levels, and decreased activin signaling. Overall, these data are consistent with a role for the activin betaC-subunit as a regulatory mechanism to reduce activin A secretion via intracellular heterodimerization.