In order to test an alternative selectable marker system for the production of transgenic peanut plants (Arachis hypogaea), the bacterial mercuric ion reductase gene, merA, was introduced into embryogenic cultures via microprojectile bombardment. MerA reduces toxic Hg(II) to the volatile and less toxic metallic mercury molecule, Hg(0), and renders its source Gram-negative bacterium mercury resistant. A codon-modified version of the merA gene, MerApe9, was cloned into a plant expression cassette containing the ACT2 promoter from Arabidopsis thaliana and the NOS terminator. The expression cassette also was inserted into a second vector containing the hygromycin resistance gene driven by the UBI3 promoter from potato. Stable transgenic plants were recovered through hygromycin-based selection from somatic embryo tissues bombarded with the plasmid containing both genes. However, no transgenic somatic embryos were recovered from selection on 50-100 micromol/L HgCl2. Expression of merA as mRNA was detected by Northern blot analysis in leaf tissues of transgenic peanut, but not in somatic embryos. Western blot analysis showed the production of the mercuric ion reductase protein in leaf tissues. Differential responses to HgCl2 of embryo-derived explants from segregating R1 seeds of one transgenic line also were observed.