Carbohydrate-protein interactions play a key role in many biological processes. Cramoll is a lectin purified from Cratylia mollis seeds that is taxonomically related to concanavalin A (Con A). Although Cramoll and Con A have the same monosaccharide specificity, they have different glycoprotein binding profiles. We report the primary structure of Cramoll, determined by Edman degradation and mass spectrometry and its 1.77 A crystallographic structure and compare it with the three-dimensional structure of Con A in an attempt to understand how differential binding can be achieved by similar or nearly identical structures. We report here that Cramoll consists of 236 residues, with 82% identity with Con A, and that its topological architecture is essentially identical to Con A, because the Calpha positional differences are below 3.5 A. Cramoll and Con A have identical binding sites for MealphaMan, Mn2+, and Ca2+. However, we observed six substitutions in a groove adjacent to the extended binding site and two in the extended binding site that may explain the differences in binding of oligosaccharides and glycoproteins between Cramoll and Con A.