Stimulating new blood vessel growth in ischemic hearts or limbs is a hopeful new approach for patients with advanced vascular disease. This approach is based generally upon the hypothesis that sufficient exposure of a vascular bed to an angiogenic protein will stimulate neovascularization. Most angiogenic proteins have a markedly short serum half-life. To overcome this, researchers have turned to gene therapy to ensure continuous expression of angiogenic proteins and prolonged exposure in the targeted vascular beds. This field is still evolving, and although early clinical trial results suggest angiogenic gene therapy can be successful, many questions remain. As we continue to learn more about the complex interplay and coordinated action of the various factors involved in regulating angiogenesis, it is likely that strategies for therapeutic angiogenesis will continue to change. This review addresses the current state of angiogenic gene therapy, contrasts gene therapy with angiogenic protein delivery, describes early and recent clinical trial data, and discusses potential new directions in the field.
Copyright 2003 Elsevier Inc. All rights reserved.