The aims of the present theoretical study of the conformations of [alpha]-oligodeoxynucleotides forming triple helices with DNA duplexes are to understand the structural and energetic factors involved in [alpha]-triple helix formation by means of energy minimization, and to explain the experimentally observed dependence of strand orientation on the nucleotide sequence. It is found that the energetically preferred orientation of the [alpha]-oligonucleotide with respect to the homopurine strand depends on the sequence of the homopurine.homopyrimidine tracts. This is a consequence of the structural heteromorphism of base triplets in the intrinsically more stable reverse Hoogsteen hydrogen bonding configuration. Practical rules are proposed for determining the orientation of the nuclease-resistant [alpha]-oligodeoxynucleotide strand which will form the most stable triple helix.