The distribution of gap junctions in prenatal, postnatal, and adult rat hearts was studied by laser scanning confocal microscopy, using antiserum raised to a peptide (HJ) matching part of the sequence of connexin43 (a cardiac gap junction protein). Using digital reconstruction of optically-sectioned tissue volumes, a highly sensitive detection of immunolabelled gap junctions was achieved. The distribution of positive anti-HJ immunolabelling was regionalised in the prenatal heart from its first detection at 10 days post-coitus. High levels of immunopositive staining occurred in the trabeculae of the embryonic ventricles. Other zones of the early myocardium including early central conduction tissues had no detectable signal. The prenatal outflow tract, interventricular septum and a narrow zone of myocardium subjacent to the epicardial free wall also had low levels of immunopositive signal. During postnatal growth and in the adult rat heart, a marked distinction emerged between the central conducting tissues of the atria and ventricles. Whilst small immunostained gap junctions became detectable within the atrioventricular node on the atrial side of the junction, between the interatrial and interventricular septa, no immunolabelling was found within the ventricular branching bundle. This difference between the atrioventricular node and branching bundle is consistent with potential functional distinctions between these two structures, and is not consistent with the recent proposal that the His bundle and its branches act as an extended atrioventricular node in smaller mammals such as the rat. Ventricular Purkinje fibres, distal to the branching bundle, showed high levels of anti-HJ immunostaining. Organisation of gap junctions into intercalated disks within the ventricle proceeded late into intercalated disks within the ventricle proceeded late into the adolescent stages of heart growth. The distribution of a second connexin protein, MP70, not previously characterised in the heart, was studied using monoclonal antibodies. MP70 was transiently immunolabelled in the heart during the postnatal period, but only within valves. Previously, this protein has been reported only in the eye lens. MP70-containing gap junctions may represent a specialisation in avascular tissues, since blood vessels are not present in either the eye lens or the cusps of heart valves.