FSH interacts with a guanine nucleotide-binding protein (G-protein)-coupled receptor, which in turn modulates signal transduction via the G-protein subunit alpha s. However, it is unknown whether FSH regulates alpha-subunit gene expression and whether G-protein alpha-subunit genes other than alpha s are modulated in FSH-stimulated signal transduction. Regulation of mRNA for alpha s and alpha i-2 was studied in primary cultures of rat Sertoli cells because these proteins are linked to the control of adenylyl cyclase. In addition, mRNA for alpha i-1 and alpha i-3 were quantified because these proteins are putatively linked to ion channels but have not been well characterized in the Sertoli cell. Northern blot analyses demonstrated that FSH induced a dose-dependent increase in steady state levels of alpha i-3 mRNA. In contrast, FSH caused a dose-dependent decrease in levels of alpha i-1 and alpha i-2 mRNA. No significant effect of FSH on alpha s mRNA levels was detectable. The time course of FSH effects showed a 75% decrease in alpha i-1 mRNA levels, a 50% decrease in alpha i-2 mRNA levels and a nearly 3-fold increase in levels of alpha i-3 mRNA between 4-6 h of treatment with 100 ng/ml FSH. Steady state levels of alpha i-1 and alpha i-2 mRNA returned to pretreatment levels after 10 h FSH treatment, while alpha i-3 mRNA returned to a new steady state level approximately 50% greater than the pretreatment level.(ABSTRACT TRUNCATED AT 250 WORDS)